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Abstract

A model for ionization waves in a D.C. gas discharge is developed in
:1.

a straightfonrard manner based on the linearized first three moment

equations for positive ions and elec:trons and Poisson's equation. Slab

symmetry is imposed. The predictions obtained by applying this model to

discharge conditions for which lionization waves have beeh. observed are

in good qualitative agreement with both the results of experiment and
the predictions of other theories. The effects of including small pertur-,

bations in ion temperature and electron neutral momenttun transfer collision

frequency and energy transfer collision frequency are also discussed.

V
I

. I
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I I

LINEARIZED THEORIES OF IONIZATION WAVES

I. :'Introduction

The positive column of most D.C. gas discharges is a large luminous
1 .l

'region ling between the anode glav at the anode and the Faraday dark

space towdrd the cathode, (Fig.: 1).. Often for discharge conditions of

I ' particuilar interest, because of their applications in laser technology,

the column can be seen'at .ny particular instant to have a regularly

striated appearance (Fig..1). When firs.t observed these waves were some-

what of a mys..try;'hcwever, in the past fifteen years several models have

been proposed• to describe such ionization waves, Among these are the

models of Pekarek (Ref 3), W•eissglas and Andersson (Ref 14), and Swain

¾ and Browp (Ref 12). The primary basis for 6ach of these models is the

use 'of a two species three moment treatment to describe small variations
I .i I

Sin local electric fields, number densities, drift velocities, and temper-

atures. These moIels differ in the exact form of the moment equations

used and in sinlifying assump)tions made. This report explores the

prediptions of the straightforward one dimensional two species three

'I moment model of discharge disturbhnces derived in Section II and, in

Section III, compares these predictions with the results of experiment

a•d with the predict.ions of the theoýries of Pekarek and Swain and Brown.
*11

,12
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II. Theory

The Equilibritui Positive Column (Ref 2: 238-251)

This discussion of the equilibrium positive column of a gas discharge

is intended to establish relationships which will prove useful in later

sections. The axial electric field strength E in the column is approxi-

mately constant. A direct consequence of this, seen from the one dimen-

sional Poisson equation

ax x (N -N) 0 (1)

is that electron and ion number densities, Ni and Ne respectively, are

approximately equal everywhere along the longitudinal coordinate of the[ 4•) column x. The primary charge carrier production mechanism in the column

is ionizing collisions between fast random electrons and neutrals. The

primary loss mechanism of charge carriers is ambipolar flow to the walls

oý the tube. This ambipolar flow is set up when, prior to equilibrium,

electrons, due to their greater mobility, diffuse to the tube wall much

faster than positive ions. A radial field then exists such that the

wall is at a negative potential with respeci to the rest of the column.

This field helps further induce ambipolar flow by tending to annul orig-

inal differences in number density by pulling ions toward the wall and

.repelling electrons (Ref 2: 143-145). Current in the column is also

approximately constant with most of the current being carried by the more

mobile electrons. The slower positive ions, meazwhile, balance the

electron space charge.

3
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"* Since current is constant and there is no build up of charge in

equilibrium, ionization rate must therefore balance ambipolar loss rate.

Making use of this fact Von Engle arrives at the differential equation

d2N IN o1M N 0 (2)
dr 2  r at• a

where N represents either electron or ion number density, r represents

the radial coordinate measured from the longitudinal axis of the tube, a

represents ionization rate per electron, and Da represents the coefficient

of ambipolar diffusion (RP~f 2: 144). Th6 solution to Eq (2) is

N' J (rV7 (3)
0 0 a

where N represents the equilibrium number density along the longitudinal

axis and J represents the zero order Bessel function. Assuming that at
0

I et'u- e "-t va ll (r R N'R. 0 Eq (3), iq atLiSfIe whe1n

Da (•/R) o (4)
Da

where C represents tie first zero of J
r 0

Electron kinetic temperature Te can be obtained directly from Eq (4)

by solving

3 1

Ap .'q fin V.iX ,e 2

J where

4
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"3 1.
SAp° j7qo/ m e Vi 2 eX (6)

D qe - 1"- (7)

and X q0V.1X T (8)
"e

(see Appendix A, Eq (103)). Here A represents the slope of the ionization

efficiency curve in ion pairs/m/Torr/volt, p0 represents the pressure of

the neutral gas in Torr, p+ represents the ion mobility in m2/volt/sec,

q represents the charge of an electron in coulombs, me represents electron
mass in kg, and V. represents ionization potential of a neutral in volts.

Once Te is found from Eqs (5) and (8) then a can be found from Eqs (4)

and (7).

Ea.Libi acreconservatio "is represented for the colimn by Eq

(2). Mhe equations

M +Ue~)=• (+)E (9)

<V r>eI0
-(ý4jq U E K e M)(T -T )(10)o e(i) Ke(i) Ae (i) e(i)

express equilibrium conservation of axial momentum and energy respectively.

for electrons (ions) (Ref 4: 50, 61) (Ref 2: 123). In Eq (9) U (i)

represents electron (ion) drift velocity, •'(+) represents electron (ion)

mobility, and E represents axial electric field strength. In Eq (10)

"Ke(i) represents the average electron (ion) energy lost to a neutral per

5e
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I

: I

collision, <Vr>e(i) represents the average electron (ion), random velocity,,

xe~i) represents the electron (ion) mean fr'io path between c6llisions

with neutrals, and T and T. are neutral 'ldnd ion kinetic temperatures
0 1

respectively. For reference in a lat'br section Eqs (9) and (10) will

appear as

4 V

q e. he

n I

*+U (12)~
q 1

-q U i= E T (1)
oel e, (1101

Tq U tEs v ( Te (1q)
S, 0 0e

ic Phi alechan is

' 1

Accord(+)ing toe ekaekthen basio factmorentum th•nseprdctiion ofrmoving
I I

and tin is the eltectron (ion) energy trinsaer collision frequency.

I I

uis topically small wifth respect ,to T in E (13) and has theratore

been omitted. ;

The Basic Phygical Mechanism of Striations

changes, in local electron tempprature caused lby space charge fields

I I

(Ref 9: 741) (Ref 10: 893). Assumin the above mentioned dependlnte
,o'19

R :6i

-I I I

* ,
: = ,•6
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. II

of a on klectron temperaiure, the sequential interaction of the ,above to

produce moving striatiohs is summarized by Lee, Bletzinger, and Garscadden

as follows:

The striations are cpnsidered to occur at a sufficiently,
high gas pressure so that anbipolar diffusion conditions are
operative. The mobility of the electrons is much laIger than
that of the ions and a disturbance in the doncentration will,
after a 1hort time, produce a positive space charge at a region
whei~e the concentration is increased. This space-charge elec-
tric field will cause a decrease in the electron temperature
(giving a dark 'region) in the region to ;the anode pide of the
original 4isturbance, cons6quently'reduting the ioh density.H ,'In turn; this dark region produces a negative space charge
and an,increased Te (forming . bright region) and thus an
increased ne 'td its anode side. 1This assumption is in accord
with the experimental profile of the moving striations
"(Ref 11: 381)!11

I I

'From the above explanation it is apparent that striation, phenomena

V •can be modeled as small perturbations of the ionization rate a, the

charge carrier pumber densities Ni and Ne, 6lectron kinetic temperature

,T e and electric field E. Axial variations in these quantijties were the

basis of thb original Pekarek theor' (Ref 6: 452). In a yvery ,recent,

model by 'Swain ind Browm bhsed on the, first Wo ion 'moment equations and

,the first three electron 'moment:equations, small axial perturbations of

electron drift vel ocitV U., ion drift veloci-ty Ui, and! 0 with respect
e C

to Te were also considered. Swain and Biown further consider Ni always

equal to N umie T,i to'be negligible, and allow radial variation in
e I If

their basic and equilibrium equations. ,They, . however, consider no vari-

,ation in radial velocities and only wave like axial variation of the

remaining quantities in their first order linearized eqpations. They

make no attempt to perturb the ambipolar loss ton•n(Rdf 12:.' 1383-1386).

The model 'discussed in the fqllowing sections is strictly a one dimensiona'
' I I'7

S71
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model. In addition, N." is not considered equal to Ne, an attempt is made

to vary the ambipolar loss tern, and perturbations of Ti, v with respect

to E, and ve with respect to E are considered.

The Three''Moment Equations'

: The discharge conditions and plsa: 1 a oscillations discussed in this

paper are limited to those for which the motion of positive ions and

electrons can be adequately describ6d by the first three moments of the

Boltzmann equation. Assuming f the distribution function for the ith

species to be isotropic in a system drifting with. an average velocity ,

the first three moment equations for any species are

•n 8 (nq,) = d~(~3 (15)

Tt +at-coll.

.+qj q n<F> __ + m i ratJcoll.

-mqZ . UV f.- coll. (16)

(rt q -I + - I dv-- ll + f~v mrt) j~ 'Coll.

mqJ di (a • ov ll. (17)

where x. represents the position space coordinate in the kth direction,

t represents time, <F>, represents the sum of external forces averaged

'The trea'tzent discLussed in the remainder of this section closely
parallels that of D. A. Lee (Ref 8: 1-19).

8
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over velocity space, a21 represents the kinetic stress tensor, m repre-

sents the particle mass of the species, p represents the pressure measured

by an observer drifting with velocity q2,It
q 67 v dvf (18)

and n = drV f (19)

Here the usual repeated subscript notation is used to indicate summation.

Eq (16) describes momentum transfer in the 'th direction. Assuming f to

be Maxwellian, the kinetic stress tensor' j becomes

a = pSzj = fsj (20)

where T is the kinetic temperature of the species (Ref 1: 114-121). If

there is no applied magnetic field, the self field is neglected with

respect to he a clec?-c 'ied il.,• tre Tor-ne,-, force term, andl

other forces are neglected, then <F> reduces to zq E, where z represents
0

* charge number and sign, q0 represents basic electronic charge and E

represents the Zth component of electric field strength. With these

assumptions and letting

Q = V rlF•coll" (21)

• , ]• DfnA£ • Vv ]cL l (22)

ZZnP= ( Vi coll. (23)

9
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Eqs (15), (16), and (17) can be written with slight simplification as:

t x Q (24)

___ 2q9 _ 1 _ (nTj zqE + )
mt qp - qZ (25)

ax. n Dxt m-

32

3 ~~ 3 , 9 tPyq 9, q 9,  -Tj (26)

Moving striations propagate longitudinally in the positive column.

In order to simplify Eqs (24), (25), and (26) variations in q, f and

will be conidered to take place only in the longitudinal or x direction

where x increases from anode to cathode. This is not of course a good

assu•ption in terms of what is actually happening in the column since

*radial variations in charge carrier velocity and electric field strength

exist and undoubtedly have their effect on local electron temperature

and particle production and loss. However, the solution of the much

simpler one dimensional equations does provide qualitative results and

an insight into the more complex three dimensional problem. 1hus, letting

q= {u,0,O}, {= {E,0,0}, and = {x,0,0} Eqs (24), (25), and (26) become

D Ne + Ne + Ue IN e Q (27)

at eax + eax~

DN. DU. DN.
-+-N- + x Q Q (28)

a ~ U e +Te DN e+1 al cý4E +u

t Ue me x - "+ Ae + (29)

10
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aUii T. 3Ni 1 Ti_ ZqoE QU
S+i1 Nimi m. + x Li + A + (30)a . + N k -x m i a x1 i R

3•l + UeTTe + 2o Te •x--g eem e +Q e Te (31)

[÷U. +2 T- m.A.U. + P + Q T (32)
at I S x 3 1 (

Eqs (27). (32) along with Poisson's equation

T, E o (ZNi . Ne) (33)
:. 0

ii
are a system of first order non-linear differential equations relating

Ne, Ni, Ue, Ui, Te, Ti, and E. Te subscripts i and e denote ion and

electron quantities respectively.

The Collision Terms

Q represents particle production and loss duo to collisions. As

previously mentioned, the primary charge carrier production mechanism is

ionizing collisions between fast electrons and neutrals. This is just

simply the rate of ionization per electron times electron number density

or cdNe. Since the primary charge carrier loss mechanism, ambipolar flow

to the walls, is a radial phenomenon, no realistic charge loss model is

available. In order to balance charge produ.tion and charge loss in
equilibrium a contrived loss term -!(Ni + Ne), similar to that used by

Pekarek, is included in this analysis (Ref 3: 857). Here T represents

the mean life time of the charge carriers. T probably depends upon both

a and Te, however, since the nature of this dependence is unkMown, it

will be considered constant throughout this treatment. Hence,

11



GEP/PH//72-13

4o

A , Q = -y(Ni + N) (34)
e; Ti

In equilibrium the acceleration of the electrons (ions) by the applied

"electric field must be equal to the rate of their momentum transfer to

neutrals during collisions. Hence from Eqs (29) and (30)

q E
m 0oE (35)e me

SZq (36)

A ii36

Therefore from Eqs (11) and (12)

A =-•U (37)e e

AýA. -v+Ui (38)

In equilibrium Eqs (31) and (32) combined with Eqs (35) and (36) become

q0EUe =meAeUe Pe (39)

"-Zq EUi. = miAUi = P. (40)

Therefore from Eqs (13) and (14)

Pe -eTe (41)

Pi = -Vio (Ti " T ). (42)

12
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The Characteristic Form of the Equations

With the collision terms modeled as in the previous section, Eqs

(27) and (33) are a system of quasi-linear equations having the form

ay. ay.Ai + B.j•- F. (43)
h°ax ij at 1

where A B.. and F. are functions of the variables yj. The equations

1J, 1j

of such a system can be written as an equivalent system of equations

each of which involves differentiation in only one direction in the x-t~,

plane at each point (x,t), provided there exist j vectors V = Vi, i =

1, ... , j, such that j linear combinations of system (42) of the form

ay. ay.
ViAij'" - + V.Bj -" =V.F.1 Dx t 1 1(44)lija iijt ii

exist where

V.Ai. = AV.B.. (45)

for real X. If j such linear combinations do exist, then these equations

can be used to form an equivalent system of equations each having the

characteristic form

ax D a'+1ý i Bij 11iF (46)

where the differentiation is in one direction only, along the curve

(x - x) =A(t - t ) (Rof 5: 103-107) (Ref 8: 10).
0 0

The X)s associated with the system (27)-(32) are Ue, U e.± ae, Ui and

U. ± a. where a = -/ -and ai = 3 Ti/mi. Eqs (27)-(33) written in

characteristic form are:

13
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4I

) I S"'"Te +Ne - TQ+ Pe -meAee. •2 e Ne (47)

eN. aT. 5i i+N (48)'
1-1 . 1

7%e N au N'Te fjq ~ - 1  A N P
ge e +

3 7-

me e ea mme eMe a e e 2N e

e+ U. (49) and (50)

T. 3N.i DI. N. 3T. (Zq 3E QUi 2 N2iP
+ + L A 1 S_

+ U , (51) anU (52)
31

,I I

where aU L and ( - + (U ' ei) 1 PoissonIs
Eq (33) is in characteristic form. I '

The Simplified Electron Equations

In the electron equations the time derivatives' may be neglected for

any electron variable Y since for phenomena of interest

«<IU ' e (U a (53)
at eax << e ax

(Ref 6: 454). This is equivalent to gayiAg that both ,the electron'drift

velocity Ue which is usually ? 101m/sec and the electron acoustic speed
e I .1

ae usually > 10sm/sec are much greater than the phase velocity of the

i onL',tion waves which is usually < 101m/sec. Making use of statement

14
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(53) and using the 'fact that Ue << ae2 , Eqs (47), (49), and (50) can be

reduced to

M 2 vN vUN

Ii, e

+ + - + ] (54)

~q vUU t+ [U ee
e Ce 2 t oe, 4 e Ue1e e(Ni + e-- (SS)

xe, e e e

11

'Te '2 Veo e 2 [ne 1 e
54 - -N [e ]eue (S6)

X I I i e1

I ' where the relationships expressed by Eqs (34), (37), and (41) have been

';[}substituted-,for Q, 'Ae, and respec'ivly

The Nondimensiondl Linearized Electropn, quations

S :: In A' normal equilibrium discharge Ne Ni, Ue Ui, TT.I and B are

approximately constant. Thus the equilibrium conditions resulting from

Eqs (33), (54), (55)., and (56) are

'I N.-N = No (57)

2- (s8)
*I I

T 0,Veo T e0
ec = -q EO=vU 0m(q
Ue = e (59)

Iis
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where the zero superscript denotes equilibrium value. Since no radial

variation in number density is allowed, No, the average number density

in any cross section of the column, is taken for the equilibrium number

density for both electrons and ions throughout the column. The variables

Ni, Ne, Ue, Te and E are assumed to have the following form: Y =

.y0.+ yexp(ikx + .t) where Y represents any one of the above mentioned

variables, Y0 its equilibrium value, and yexxp(ikx + s6t) a small pertur-

bation of Y away from the equilibrium value with variation in space and

time as indicated.

As previously mentioned a may be considered to vary with Te, v- with

SE, and with both T and E; therefore, small perturbations in these

appear here as

a c = ai + a' te (60)

Vv_+v e (61)

V + eV + v' te (62)Ve Veo eo e0

where ' (prime) denotes (dot) denotes a' can
Tar T =T 0 and* dt eoe

be computed directly from Eq (6). Swain and Brown (Ref 12: 1383-1386)

consider v constant; hwcever, according to Von Engle

1

pcE (63)

when equilibrium discharge conditions are such that collisions between

electrons and neutrals may be considered elastic (Ref 2: 124). This

variation can be used provided the time to reach microscopic equilibrium
" (approximately i0"6 sec) is short compared wi'th the period of oscillation

16
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of itriations (approximately 10" sec). For elastic collisions based on

statement (63)

'V-- (64)

For inelastic collisions v_ will be a4.: oximated as constant; hence

0 = 0. Plots available in the literature similar to that in Fig. 2 are

used to determine which type of variation is appropriate for a particular

gas and discharge condition (see Table I). Based on Pqs (10) and (13)

<V>

Vee e T(65)

From Eq (65)

1 eo .(66)
e

and ',O K= eV (67)•0 K 0

Electron mean free path Xe is approximately constan, for discharge con-

ditions of interest here (Ref 2: 33, 34). For elastic eler ron-neutral

collisions, the fraction of energy transferred K is constant and ;, = 0.

Plots available in the literature similar to that in Fig. 3 are used to

•determine which type variation is appropriate for particular gas and

discharge conditions (see Table I).

With the above assumptions the linearized nondimensional electron

equations are

17
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•f approximated by a st. line

• 40

4 0

• ~20-

cc E
• (elastic collisidns)

"2 4
SP°/p° (10-2 v/m/TORR)

Figure 2. An Example, of Equilibrium Electron Drift
Velocity 1U,° 01 as a Function of Reduced
Field E0 /p° for ar. Arbitrary Gas.
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range of elastic collisions

I°I0 1 .102

.0E0 /p° (10-2 v/m/TORR)

Figure 3. An Example of Equilibrium Average
Fraction of Energy Transferred per
"Electron-Neutral Collision K as a
Function of Reduced Field for the Same

* Arbitrary Gas.
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]k. (3e a, a* t 7 au, * ae - 1 (ni % (68)

2
ihue= a + a.*e- c 2) t + Z au, ae - 4 (ni ne) (69)

ikte - u ae + (ni - ) (70)

for discharge conditions such that momentum and energy are trariferred

through elastic collisions and

(3 a + -%- aue e - (n - n) (71)

iku0  ~ a + 2I1 te, + 7 aue 1 Sa + ~aK*e

e+ ~ ~ au + a-ýe+-(ni - ) (73)

ikte -3a - ae"*It+ 2ae 2a 52- Te+

for disdcarge conditions sudc that momentum and energy are transferred

through inelastic collisions. The nondimensional quantities, except a, in
n n n.

the above are the variables x, k, ne, )ni and te denoting -, kR, -) P
e an N N0 .N'

an-- respectively and the nondimensional constants a ' e, K* ,U e 0 T eo R.an Pedeotig a e Te-U- E" o and/Ue0 me/Te°
an.-- /. respectively.U 0

e
The constant a is defined by the equations

19
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.,.,. ' .VeR qoE0 R meUe R.,
,,i,-a.= - =-V (74)'

e ' "e

The R appearing in the above quantities denotes tube radius.

The Nondimensional Linearized Ion Eguiations

In addition to Eqs (57) and (58) the 'ion equilibrium equations

resulting from (33), '(48), (51), and ,(52) arE :

V. (T.0-T)+| .,,(75

0 Eq = v Oumi 0r T0 0 (75)

Assume the variables Ni, Ne, Ui, and Ti also vary as Y =Y + yexpCikx + st)
1 e 1 1

as in the case of the electron variables, v+ and v. o do not vhry with E

since 1+ and the fraction of energy transferred, through cqllis.ons are

"constant for ions (Ref 2: 113 114); Any variation .of vio with respect

to Ti is small and can be neglected based on the following:
1i

'I Iio T0 0"Di D = (i

.+ V i -- Z viti , (76)
oIo. o T.O

I *

With the above assumptions t1e linearized nondimensional, ion equations

are:
V I

2 2 4 (5521.!*-•(ik + s)n + (ik + s)ti=- ftt + Abu. 1jii te

5 Pi 21 n -fe (77)
" ~~+ V i i"%

20
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IS

3

3 P/pl /72-13 *

I • i +3 + LI- 2'i + ,s + Ii-±:L i~ =

iS - -

* ¾5I .. }kn L ( ,. 'IJ

1 1

PU 0
Ui s i}Li te . -nej :(78): and (79) :

'II

The nondimensional variables ,t, s, ui, and ti are respectively:t-,

I it.
•--. andcept for b, the nondimensional cons~tants f, ',U 'U 0u -. '

k i I v.iR WRTe 0 -UO 0  U.0

T*, and 11i, in the'above equations are 1. , U. and

; 'Trti lya
are'respecvea.

I I

v v+miUi R qoE°R: k.b -- (80)

.T. 0  Ti (
, I 3

, The lineiriz~d, nondimensional lPoisson's equation is

i ' • iikce ,= n• ne, (81)
3 *

where z is oIRq 0 N e

The Dispersion Relation
I I I

The electron equations either Eqs (68), (69)-, and (70) or (71), (72),

and ,(73) and Eq (81) are, solved simultaneously 'to find te, and e in terits

of n such at hat

" te = C (k)ni (82)

21I
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.!,
e = c k}ni (83)

where C and C are complex. Eqs (77), (78), (79), and (81) can be1 2

reduced to

[j2I*Ckksl (

s + 5ik - + D7 i2] *C ik

S+ 3-bui+ (4f- i -s ti = 0 (85)1+ 3 ik n- b

iri

+ ik t. =0 (86)

' This system has a solution only for those combinations of s and k which

make the determinant of the matrix of coefficients zero (Ref 7: 157).

By' setting

I3iik-

"€44

• 22
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Sik[Ci]

r + Aik -2at*C + 'S .C j[S i k] 0 ~bI=

ik a, ikeC 1]

NV[1*r r 1 2r7

a! +5 *C -kE 2JJ 5iS + (iiik,+L. [.!J (87)

a dispersion relation of form

D(s,k) = s 3 + B(k)s 2 + C(k)s + D(k) = 0 (88)

is obtained where B, C, and D are complex.

Striation-like behavior can be inferred where real s(k) has a posi-

tive maximum (the s (k) at which disturbances are propagated exponentially

at their maximum rate) or where real s (k) has a relative negative maximum,

which iýould indicate only slight damping (the s (k) at which disturbances

are the least damped exponentially relative to those around them but not

so heavily damped as to be undetectable). The phase velocity - ImC)

aIm(s() mand group velocity - - as well as frequency - L - and wavelength2r2 at the point of the striation-like behavior can then be computed from

the dispersion relation and compared with experimental results.

The Equilibrium Data

To solve the dispersion relation Eq (87), it is necessary to'compute

Ithe nondimensional constants ý*, a, b, f, a'*, a!*, T *c, Tih, pi and

from the equilibrium values E0, p0, N0, U.0, U 0 PT% T O 0 T. 0,V2V+

""of Veo' 2Vie a, r, a', and R. These values, all of which are in inks units

23
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unless otherwise specified, are obtained for this treatment from a combin-

ation of ex'perimental data, basic theory, and the equilibrium equations

themselves. The gas, No, To, R, and p are known or assumed based on

typical experimental values. Listed in Table I are quantities useful in

computing gas discharge equilibrium conditions which can be found in

Von Engle (Ref 2).

Table I

Quantities Useful in Computing Gas Discharge Equilibrium Conditions

Quantity Symbol Units Source (Ref 2)
+

Ion Mobility at 1 + 10"1 m2/sec/volt Table 4.1, p 114
Torr°C 0,

Axial Electric Field E0  volt/m Fig. 125, p 245;
Strength Fig. 127, p 247

Slope of Ionization A ion pairs/m/Torr/ Table 3.7, p 63
Efficiency volt/electron

Electron drift velo- Ue 103m/sec Fig. 61, p 124citye

Ionization Potential Vi volts Table 3.6, p 59

Fraction of energy K Fig. 63, p 126
transferred/electron
.neutral collision

nm/volt Fig. 63, p 126

Another excellent source for basic equilibrium data is Brown (Ref 4).

The ion mobility at 1 Torr and 00C + adjusted for temperature and

pressure according to the equation

+ + T 1
10 *27*3*p

0

24
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can be used to obtain v+ and U.0 from Eqs (9).and (12) when E' is known
1

experimentally. The empirical formula

v. (7 x 10.6)p (90)

is used to obtain v. With vi0, TO, Ui., and E known Ti° is available

from Eq (14).

From Von Engle Ue0 can be found knowing EB and po (see Table I).

The electron mobility and hence v_ may then be found from Eqs (9) and

(11). Te°, a, and a' can be obtained from Eqs (5), (6), and (8) by

making use of Von Engle (see Table I) to obtain A and Vi. With v , E0,

SUe , and Te° now knowm, eo is easily found from Eq (13). From Eq (58),e2
T -. Sec- Appendix B for sample calculation of equilibricm data.

The Metxod of Solution

To solve the dispersion relation Eq (87) k is assumed to be positive

real. Starting wivit some initial value of k, numnerical values for C

and C in Eqs (82) and (83) are determined by solving simultaneously
2

Poisson's Eq (81) and the electron equations either (68), (69), (70) or

(71), (72), and (73) depending upon whethor the value of E°/p 0 was such

that inelastic collisions are important. Kniowing the values of k, C ,

and C 2 , numerical values for each element of the determinant in Eq (87)

are found. Evaluating this determinant at this point, values for B, C,

and D in Eq (88) are obtained. Knowing its coefficients, the cubic

dispersion relation is then solved by Newton's Method to find the first

of its three complex roots. The quadratic formula is then used to find

the other twvo roots. k is then incremented to a new value and the above

process is repeated. k is most conveniently varied so that the results

25
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are easily plotted logaritinically. By using electron Eqs (71), (72),

and (73) and setting * = 0 the effect of not allowdng v_ and veo to

vary with 13 is easily evaluated.

2

.*, o

4,

• 26
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III. Results

The Roots of the Dispersion Relation

The real and imaginary parts of the solutions to the dispersion

relation Eq (87) for a mercury-argon discharge at 3 Torr (corresponding

roughly to the experiment des-cribed in Lee et aZ. (Ref 11: 378)) are

shown in Figs. 4 and 5 respectively. The equilibrium data u,.ed to model

this 3 Ton mercury-in-argon case is included as a sample calculation in

Appendix B. Roots a and c are heavily damped over the entire range of

k. Root b, however, exhibits a negative niaxmum at approximately k = 3.

The narrw band of frequencies around this point are those for which

disturbances are the least damped and therefore the most likely to propa-
I . Re (~s)7. gate. If the damping or amplification per cycle, 2in m-(s], is less than

one, a wave will be considered to be neutrally damped since for such

waves there is a high possibility that damping or amplification may

appear as a result of the rather crude approximations used to obtain the

equilibritun conditions of the discharge modeled and not as a result of

the model itself. In fact, highly believable adjustments to the sthrting

conditions for the cases examined here svill actually cause the model to

predict 27 1-7,7, much less than one or actual neutral damping. Never-

theless, the damping per cycle predicted by the model in this case is

1.34, which even by the above criteria; indicates the presence of sig-

nificant damping. The striation frequency and wavelength at the point

of least damping are 8.7 khz and 1.8 cm respectively. Striation phase

and group velocities, v and vg, are 162 m/sec and -253 m/sec respectively.

The wave predicted is a backWard wave since the phase and group velocities

"are in opposite directions. The experimental values of v and v are

27
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50 m/sec and -50 m/sec respectively. The striations in the experiment

are neutrally damped and occur over a narrow range of frequencies (Ref

11: 383). n t ile bacmd ard waves over a narrow range of frequencies are

predicted by the model, the group and phase velocities predicted are of

the same order of magnitude but not approximately of equal magnitude as

indicated in the experiment. Additionally, the damping predicted by the

model does not show up in the experiment.

Mhe Results of Other Theories

Figs. 6 and 7 compare the real and imaginary parts respectively of

the striation roots of three different models for the same mercury-in-

argon case depicted in Figs. 4 and 5. Root d is computed exactly as

root b except that v_ is held constant with respect to 1E rather than-1

considered proportional to El as in root b. Root d is included for two

"reasons. It illustrates the effect of the additional assumption v -E

when compared with root b and compares favorably in the region of stria-

tion-like behavior with root e computed by Swain and Brown's model (Ref

12: 1383-1386). Root f is computed by the Pekarek theory as detailed

in Lee e~t aPZ. (Ref 11: 381, 382).

Roots d and e predict neutrally damped waves with amplification per

cycle of .457 and .828 respectively. Root f predicts exponentially grow-

ing waves with an amplification per cycle of 2.79. Striation frequency

and wavelength at the points of maximum amplification are 3.S khz and

2.1 an for root d, 3.58 khz and 2.1 cm for root e, and 6.3 khz and 1.34

cm for root f, Tlhe corresponding group and phase velocities for roots

d, e, and f are respectively 80.6 m/sec and -81 m/sec, 79 in/sec and -89

"mm/sec, and 84.5 m/sec wnd -35 m/sec. The sharp peak in each root
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inditates a rather narrow range of frequencies for which wave propagation

is allowed. The results predicted by the Section II model with v • v (E)

and the Swain and Brown model are very similar, Both agree well with

experiment predicting neutrally damped backward waves over a n. rrow

frequency band with group and phase velocities of approximately equal

magnitude. The Pekarok theory predicts growing backWard waves over a

* narrow frequency band with phase and group velocities of unequal but of

the same order of magnitude.

The Characteristic Behavior for Large =

'The characteristic behavior of the equations can be ýeen in the

large k limit of the imaginary parts of roots a, b, and Ic in Fig. 4.

Such behavior is expected since for variation of the form exp(ikx + .6t)

Eq (46) becomes

(Xik + s)VB ijYi = ViFi (91)

As k + the right hand side of Eq (91) becomes negligibi. 'h respect

to the left hand side; hence

J (Xik + S6)V BjYi ~ 0 (92)

S~m
(Xill + 6) Z 0 (93)

ilm(s) + Re(.6' Im(.6) -X _v (94)

Ask gets large the phase velocities for roots a, b, and c respectively

approacl +U. , +U.1 - V Ti°/mi, and +U.I + T.O/m.. In contrast, root

"e in Fig. 7, based on Swain and Brown's model which assumes T. = 0 and
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N. = N throughout, has a, in the large ki limit of +U. _ 'T5/mi.
1 .p e

Swain and Brown's other root *(not pictured) hos a ph se velocity of

+U 0 + S T /m. as k - c Both roots ,b ahid c initially parallel theirS e 1 1
corresponding Swain and Brown roots;, however, at k Z 30 the difforonce

in Ni and Ne as expressed by Poiss.n's equation becomez large enough to

separate the roots of the tw' .iffer. ti models taard their separate
asymptotic paths. ,,,

i ~Additional Commencs,

2 a Results obtained by applying theSection II model to nunmrous other

discharge conditions were generally similar to those discussed for the

mercury-in-argon case above. In particular good qualitative agreement

was obtained with both the Pekarek theory predictions .nd the results of

the experiment described for the 50 T6rr neon diffuse discharge case

"described in axi article by.Garscadaen and Lee (Ref 13: 578). The Section

II model did not predict striation-like behavior for the 35 Torr argon
diffuse discharge case discussed in the same article. HowevIer, when the

fraction of energy transferred 'in electron neutral collisions K was,.

considered constant with respect to E or 'v v (E), the predictions

of the model were in much better agreement with both the Pekarek theqry

and experiment. The overall effect of letting v 0 and v vary with -, is

to increase the damping in the root containing the striation-like behavior.

The stri-ation-like behavior in the majority of cases other than the one

for mercury-in-argon discussed here appeared in the root whose l.arge' k
phasb velocity approaches U 0 rather than U' o - T/mi as in root b,

1 1
Fig. 4. The cause of such behavior and whether there is any corresponding

"physical significance has yet to ,be resolved,
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I I I i

I I I

IV., Conclusions

Because df the oversimplification of the physiqs involved and the
I I I

small amount of data available 'from the 'actual experiments modeled, any

comparison made between the resultý predicted by any of the nodels dis-

cussed herein and those of experiment must be highly qualithtive. In
'4 I

this highly qualitative sense, Whe predictions of all,the umodels discussed

in the! results agree moder~ately well with experiment. The better agree-
I.I

ment with experiment obtained by the Section' II model with v - v (E)

(root' d) and.by Swaiý and Brown's m6del (root ej than by the Section II
J II

model with v_ = v_ (E)' (root b) indicat'bs that for the 3 Torr mercury-

argbn discharge, p is perhaps better approximated as coqstant rather than

q proportional' to E-7. Tending to confinn the abovebýquilibrium data in

Brow (similar data for an arbitrary gas is'depicted in Fig. 2)tunlike

that in Von Engle (see Table I) .indicates that qiis discharge condition
I !

tI I is not quite such that p_ can be considered proportional to E7, and that

1. is in fact almost constant with respect to, E for Lhis operating region
, I I I

(Ref 4: 55).

A As mentioned in Section III, the Section II model produced a similar

but more damped behavior when v and ve were allowed to vary with E than

when they were held constant,. This seems phys'ically'consistent in both

cases. In the v. case the effects of a small change in local E :would be

partially offset by the effects of A corresponding change in local mobil-

ity. In the ve case the effects of a small dhange, in the local fraction

of energy transferred due to a small change in E would hasten an opposing

change in electron temperature and hence electric field. The disagreement.

of experimental results with severe damping predicted byj the Section II
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modal for the briefly discussed 35 Torr argon case was probably caused

by the use of too large a value for ý when conputing the dispersion

relation. The fact that better results were predicted when veo was held

constant with respect to E indicates that K, cannot be reasonably inferred

from equilibrium dcanges in K with respect to E (see Table I). It is

hoped that using a more reasonable value for K will, in the future, pro-

vide better results for discharge conditions where inelastic electron
neutral collisions are important; however, for the purpose of this report

the Section II model containing the assumption that = v (E) based on S' •) eo e

the above method of obtaining K is useful only in inferring the possible

effects of such variation on ionization waves.

The fact that all models examined predict striation-like behavior

in region from k = 3 to k = 5 for the 3 Torr mercury-in-argon case indi-

cates that they are generally consistcnt with each other. This is not

surprising since they are all based on some linearizdd form of the moment

equations. For the cases examined the Section II model with v _ . (E)

and ve / Ve (E) and the Swain and Browm model predict results which are

in the best agreement with experiment. Solving the moment equations by

not assuming N. = N and Ti to be negligible is of some interest from a1 (3 1

mathematical point of view. However, the fact that Swain and Brown's

model which includes these assumptions and the Section II model with

v_ ý v_(E) and veo C V0(E) which does not include these assumptions

predict almost identical striation behavior (roots d and e), indicates

that the more complicated cubic dispersion relation Eq '87) obtained in

the case of Section II model offers little advantage over the simpler

quadratic dispersion relation obtained by Swain and Brown.
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-_ Appendix A

The Ionization Frequency Equation

Beginning with Von Engle's equation

N L Ci(s - i)fcN(s)d (95)
e si

where

N(c)d(E) - [d (96)

,f = (97)

es = q V. (98)
1 01

"m : T e (99)

Ap
C = 0 Xe (100)

0

and s is energy (Ref 2: 293), the ionization frequency a becomes

3 __

a= Ap o8nei 5m J(sc- i)se mds (101)

Letting s = s. + X, Eq (100) reduces to
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qo • ci ÷x __x(zz3 X
Ap 3
a __/8_75_ Emf cxe
q=2 /8mr c.e F C+Xed (102)

or

I q0Vi
_q{C0o V i]2

atZ Ap r q/~V 2 0 (103)
o • o e f•V•\ -

where V. is the ionization potential in volts and A is the slope of the-

ionization efficiency curve in units of ion pairs/m/Torr/volt.

C39
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Appendix B

Sample Calculation of the Discharge Equilibrium Conditions

for the 3 Torr Mercury-in-Argon Case Discussed in Section III

Values for No and To are assumed based on typical discharge conditions

to be

NO = 1016 m-3

TO= 5.52 x 10"21 (400 0 K)

. R, p, EO and TeO from the experiment modeled (Ref 11: 383) are
*e

R = .01 m

P = 3 Torr
tPo

EO = 180 volt/m

"Te0 = 2.08 x 10-9 joules

The mercury-in-argon mobility V at 300°K and 760 Torr taken from Brown

(Ref 4: 77) is

= .00018 m2 /volt/sec

V corrected to 400Q and 3 Torr is0

+

p .0605 m2/volt/sec

A From Eqs (9) and (11)
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I! ••÷ ,2- 7.7 x 106 sc-1.q+ i..'

$19

From Eq (9)

1U.= 1 +Eo = 10,8 m/sec

From Eq (90)

IVi0 2.1 x 107 sec=

From Eq (75)

T. 0 - + T
1 IV 0

- T. = 5.53 x 10-21 joules;
1

From Von Engle (see Table I) for electrons in argon

U 0 = -4 x 10 3m/sece

* and for mercury

V. 10.4 volts

From Eq (11)

E~q
V. =- 0 me-e 7.9 x 10"9 sec" 1

Mee

From Eq (13)
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. I

g~oU e E°qUv0= 5.53 x 105 sec 1

e i
T !e

From Eqs (4), (5), (7) and (8)

e•=(2.4/R)2'p+e 4.7 x 10'i sec-'

Differentiating Eq (6) with respect to Te and evaluating at Te = Te

0 =(104)
" '~~TeO •eO

a= 1.92 x 1023 sec- 1 joules".

From Eq (58)

2-
"I t- -4.25 x 1 sec:

42
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